UJI ASUMSI KLASIK

Uji asumsi klasik adalah persyaratan statistik yang harus dipenuhi pada analisis regresi linear berganda yang berbasis ordinary least square (OLS). Jadi analisis regresi yang tidak berdasarkan OLS tidak memerlukan persyaratan asumsi klasik, misalnya regresi logistik atau regresi ordinal. Demikian juga tidak semua uji asumsi klasik harus dilakukan pada analisis regresi linear, misalnya uji multikolinearitas tidak dapat dipergunakan pada analisis regresi linear sederhana dan uji autokorelasi tidak perlu diterapkan pada data cross sectional.
Uji asumsi klasik juga tidak perlu dilakukan untuk analisis regresi linear yang bertujuan untuk menghitung nilai pada variabel tertentu. Misalnya nilai return saham yang dihitung dengan market model, atau market adjusted model. Perhitungan nilai return yang diharapkan dilakukan dengan persamaan regresi, tetapi tidak perlu diuji asumsi klasik.
Setidaknya ada lima uji asumsi klasik, yaitu uji multikolinearitas, uji heteroskedastisitas, uji normalitas, uji autokorelasi dan uji linearitas. Tidak ada ketentuan yang pasti tentang urutan uji mana dulu yang harus dipenuhi. Analisis dapat dilakukan tergantung pada data yang ada. Sebagai contoh, dilakukan analisis terhadap semua uji asumsi klasik, lalu dilihat mana yang tidak memenuhi persyaratan. Kemudian dilakukan perbaikan pada uji tersebut, dan setelah memenuhi persyaratan, dilakukan pengujian pada uji yang lain.

1.      Uji Normalitas
Uji normalitas adalah untuk melihat apakah nilai residual terdistribusi normal atau tidak. Model regresi yang baik adalah memiliki nilai residual yang terdistribusi normal. Jadi uji normalitas bukan dilakukan pada masing-masing variabel tetapi pada nilai residualnya. Sering terjadi kesalahan yang jamak yaitu bahwa uji normalitas dilakukan pada masing-masing variabel. Hal ini tidak dilarang tetapi model regresi memerlukan normalitas pada nilai residualnya bukan pada masing-masing variabel penelitian.
Pengertian normal secara sederhana dapat dianalogikan dengan sebuah kelas. Dalam kelas siswa yang bodoh sekali dan pandai sekali jumlahnya hanya sedikit dan sebagian besar berada pada kategori sedang atau rata-rata. Jika kelas tersebut bodoh semua maka tidak normal, atau sekolah luar biasa. Dan sebaliknya jika suatu kelas banyak yang pandai maka kelas tersebut tidak normal atau merupakan kelas unggulan. Pengamatan data yang normal akan memberikan nilai ekstrim rendah dan ekstrim tinggi yang sedikit dan kebanyakan mengumpul di tengah. Demikian juga nilai rata-rata, modus dan median relatif dekat.
Uji normalitas dapat dilakukan dengan uji histogram, uji normal P Plot, uji Chi Square, Skewness dan Kurtosis atau uji Kolmogorov Smirnov. Tidak ada metode yang paling baik atau paling tepat. Tipsnya adalah bahwa pengujian dengan metode grafik sering menimbulkan perbedaan persepsi di antara beberapa pengamat, sehingga penggunaan uji normalitas dengan uji statistik bebas dari keragu-raguan, meskipun tidak ada jaminan bahwa pengujian dengan uji statistik lebih baik dari pada pengujian dengan metode grafik.
Jika residual tidak normal tetapi dekat dengan nilai kritis (misalnya signifikansi Kolmogorov Smirnov sebesar 0,049) maka dapat dicoba dengan metode lain yang mungkin memberikan justifikasi normal. Tetapi jika jauh dari nilai normal, maka dapat dilakukan beberapa langkah yaitu: melakukan transformasi data, melakukan trimming data outliers atau menambah data observasi. Transformasi dapat dilakukan ke dalam bentuk Logaritma natural, akar kuadrat, inverse, atau bentuk yang lain tergantung dari bentuk kurva normalnya, apakah condong ke kiri, ke kanan, mengumpul di tengah atau menyebar ke samping kanan dan kiri.



2.      Uji Multikolinearitas
Masalah multikolinieritas pertama kali diperkenalkan pada tahun 1934 oleh Ragnar Frisch Serta mendefinisikan multikolinieritas adalah hubungan linear yang perfect atau exact diantara sebagian atau semua variabel bebas pada suatu model regresi, sehingga akan menyulitkan untuk mengidentifikasi variabel penjelas dan variabel yang dijelaskan. Menurut Gunawan Sumodiningrat, ada 3 hal yang perlu dijelaskan berkaitan dengan masalah multikolinieritas, yaitu:
Uji multikolinearitas adalah untuk melihat ada atau tidaknya korelasi yang tinggi antara variabel-variabel bebas dalam suatu model regresi linear berganda. Jika ada korelasi yang tinggi di antara variabel-variabel bebasnya, maka hubungan antara variabel bebas terhadap variabel terikatnya menjadi terganggu. Sebagai ilustrasi, adalah model regresi dengan variabel bebasnya motivasi, kepemimpinan dan kepuasan kerja dengan variabel terikatnya adalah kinerja. Logika sederhananya adalah bahwa model tersebut untuk mencari pengaruh antara motivasi, kepemimpinan dan kepuasan kerja terhadap kinerja. Jadi tidak boleh ada korelasi yang tinggi antara motivasi dengan kepemimpinan, motivasi dengan kepuasan kerja atau antara kepemimpinan dengan kepuasan kerja.
Alat statistik yang sering dipergunakan untuk menguji gangguan multikolinearitas adalah dengan variance inflation factor (VIF), korelasi pearson antara variabel-variabel bebas, atau dengan melihat eigenvalues dan condition index (CI).
Beberapa alternatif cara untuk mengatasi masalah multikolinearitas adalah sebagai berikut:
a).   Mengganti atau mengeluarkan variabel yang mempunyai korelasi yang tinggi.
b).   Menambah jumlah observasi.
c).   Mentransformasikan data ke dalam bentuk lain, misalnya logaritma natural, akar kuadrat atau bentuk first difference delta.
d).   Dalam tingkat lanjut dapat digunakan metode regresi bayessian yang masih jarang sekali digunakan.
Secara sederhana mengidentifikasi multikolinieritas adalah nilai R2 tinggi namun variabel penjelas (variabel bebas) yang signifikan sangat sedikit bahkan semua variabel penjelas (variabel bebas) tidak signifikan (multikolinieritas sempurna).

3.      Uji Heteroskedastisitas
Uji heteroskedastisitas adalah untuk melihat apakah terdapat ketidaksamaan varians dari residual satu ke pengamatan ke pengamatan yang lain. Model regresi yang memenuhi persyaratan adalah di mana terdapat kesamaan varians dari residual satu pengamatan ke pengamatan yang lain tetap atau disebut homoskedastisitas.
Deteksi heteroskedastisitas dapat dilakukan dengan metode scatter plot dengan memplotkan nilai ZPRED (nilai prediksi) dengan SRESID (nilai residualnya). Model yang baik didapatkan jika tidak terdapat pola tertentu pada grafik, seperti mengumpul di tengah, menyempit kemudian melebar atau sebaliknya melebar kemudian menyempit. Uji statistik yang dapat digunakan adalah uji Glejser, uji Park atau uji White.
Beberapa alternatif solusi jika model menyalahi asumsi heteroskedastisitas adalah dengan mentransformasikan ke dalam bentuk logaritma, yang hanya dapat dilakukan jika semua data bernilai positif. Atau dapat juga dilakukan dengan membagi semua variabel dengan variabel yang mengalami gangguan heteroskedastisitas.
Heteroskedastisitas adalah nilai varian dari faktor pengganggu tidak sama (homogen) untuk semua observasi. Heteroskedastisitas terjadi bila nilai varian dari variabel tergantung meningkat akibatdari meningkatnya varian variabel penjelas.
Untuk  Uji  Heteroskedastisitas,  seperti  halnya  uji  Normalitas,  cara  yang  sering  digunakan dalam menentukan apakah suatu model terbebas dari masalah heteroskedastisitas atau tidak hanya dengan melihat pada Scatter Plot dan dilihat apakah residual memiliki pola tertentu atau tidak. Cara ini  menjadi  fatal  karena  pengambilan  keputusan  apakah  suatu  model  terbebas  dari  masalah heteroskedastisitas  atau  tidak  hanya  berpatok  pada  pengamatan  gambar  saja  tidak  dapat dipertanggungjawabkan  kebenarannya.  Banyak  metoda  statistik  yang  dapat  digunakan  untuk menentukan  apakah  suatu  model  terbebas  dari  masalah  heteroskedastisitas  atau  tidak,  seperti misalnya Uji White, Uji Park, Uji Glejser, dan lain-lain. Modul ini akan memperkenalkan salah satu uji heteroskedastisitas yang mudah yang dapat diaplikasikan di SPSS, yaitu Uji Glejser. Uji Glejser secara umum dinotasikan sebagai berikut:
|e| =  b1  + b2 X2 + v
Dimana:
|e|   = Nilai Absolut dari residual yang dihasilkan dari regresi model
X2   = Variabel penjelas
Bila  variabel  penjelas  secara  statistik  signifikan  mempengaruhi  residual  maka  dapat dipastikan model ini memiliki masalah Heteroskedastisitas.

4.      Uji Autokorelasi
Uji autokorelasi adalah untuk melihat apakah terjadi korelasi antara suatu periode t dengan periode sebelumnya (t -1). Secara sederhana adalah bahwa analisis regresi adalah untuk melihat pengaruh antara variabel bebas terhadap variabel terikat, jadi tidak boleh ada korelasi antara observasi dengan data observasi sebelumnya. Sebagai contoh adalah pengaruh antara tingkat inflasi bulanan terhadap nilai tukar rupiah terhadap dollar. Data tingkat inflasi pada bulan tertentu, katakanlah bulan Februari, akan dipengaruhi oleh tingkat inflasi bulan Januari. Berarti terdapat gangguan autokorelasi pada model tersebut. Contoh lain, pengeluaran rutin dalam suatu rumah tangga. Ketika pada bulan Januari suatu keluarga mengeluarkan belanja bulanan yang relatif tinggi, maka tanpa ada pengaruh dari apapun, pengeluaran pada bulan Februari akan rendah.
Uji autokorelasi hanya dilakukan pada data time series (runtut waktu) dan tidak perlu dilakukan pada data cross section seperti pada kuesioner di mana pengukuran semua variabel dilakukan secara serempak pada saat yang bersamaan. Model regresi pada penelitian di Bursa Efek Indonesia di mana periodenya lebih dari satu tahun biasanya memerlukan uji autokorelasi.
Beberapa uji statistik yang sering dipergunakan adalah uji Durbin-Watson, uji dengan Run Test dan jika data observasi di atas 100 data sebaiknya menggunakan uji Lagrange Multiplier. Beberapa cara untuk menanggulangi masalah autokorelasi adalah dengan mentransformasikan data atau bisa juga dengan mengubah model regresi ke dalam bentuk persamaan beda umum (generalized difference equation). Selain itu juga dapat dilakukan dengan memasukkan variabel lag dari variabel terikatnya menjadi salah satu variabel bebas, sehingga data observasi menjadi berkurang 1.
Ada  beberapa  cara  yang  dapat  digunakan  untuk  mendeteksi  ada  tidaknya  autokorelasi.
Pertama, Uji Durbin-Watson (DW Test). Uji ini hanya digunakan untuk autokorelasi tingkat satu (first order  autocorrelation)  dan  mensyaratkan  adanya  intercept  dalam  model  regresi  dan  tidak  ada variabel lag di antara variabel penjelas. Hipotesis yang diuji adalah:
  Ho: p = 0 (baca: hipotesis nolnya adalah tidak ada autokorelasi)
  Ha: p ≠ 0 (baca: hipotesis alternatifnya adalah ada autokorelasi)
Keputusan ada tidaknya autokorelasi adalah:
•  Bila nilai DW berada di antara dU sampai dengan 4 - dU maka koefisien autokorelasi sama dengan
nol. Artinya, tidak ada autokorelasi.
•  Bila nilai DW lebih kecil daripada dL, koefisien autokorelasi lebih besar daripada nol. Artinya ada
autokorelasi positif.
•  Bila nilai DW terletak di antara dL dan dU, maka tidak dapat disimpulkan.
•  Bila nilai DW lebih besar daripada 4 - dL, koefisien autokorelasi lebih besar daripada nol. Artinya
ada autokorelasi negatif.
•  Bila nilai DW terletak di antara 4 – dU dan 4- dL, maka tidak dapat disimpulkan.
5.      Uji Linearitas
Uji linearitas dipergunakan untuk melihat apakah model yang dibangun mempunyai hubungan linear atau tidak. Uji ini jarang digunakan pada berbagai penelitian, karena biasanya model dibentuk berdasarkan telaah teoretis bahwa hubungan antara variabel bebas dengan variabel terikatnya adalah linear. Hubungan antar variabel yang secara teori bukan merupakan hubungan linear sebenarnya sudah tidak dapat dianalisis dengan regresi linear, misalnya masalah elastisitas.
Jika ada hubungan antara dua variabel yang belum diketahui apakah linear atau tidak, uji linearitas tidak dapat digunakan untuk memberikan adjustment bahwa hubungan tersebut bersifat linear atau tidak. Uji linearitas digunakan untuk mengkonfirmasikan apakah sifat linear antara dua variabel yang diidentifikasikan secara teori sesuai atau tidak dengan hasil observasi yang ada. Uji linearitas dapat menggunakan uji Durbin-Watson, Ramsey Test atau uji Lagrange Multiplier.




0 komentar:

Posting Komentar